14.7.5 References

References:

Alfonso M, Yruela I, Almarcegui S et al. (2001) Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid desaturation. Planta 212: 573-582

Allakhverdiev SI, Kreslavski VD, Klimov VV et al. (2008) Heat stress: An overview of molecular responses in photosynthesis. Photosyn Res 98: 541-550

Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491-543

Bewley JD, Black M, Halmer P (2006) The encyclopedia of seeds: Science, technology and uses: CABI Publishing.

Farrell AD, Gilliland TJ (2011) Yield and quality of forage maize grown under marginal climatic conditions in Northern Ireland. Grass Forage Sci 66: 214-223

John-Bejai C, Farrell AD, Cooper FM, Oatham M (2013) Contrasting physiological responses to excess heat and irradiance in two tropical savanna sedges. AoB PLANTS 5: doi:10.1093/aobpla/plt051

Larcher W (2003) Physiological Plant Ecology: Ecophysiology and stress physiology of functional groups. Springer Verlag

Larkindale J, Mishkind M, Vierling E (2005) Plant responses to high temperature. In: Plant Abiotic Stress. Ed MA Jenks, PM Hasegawa, pp. 100-144. DOI:10.1002/9780470988503.ch5

Long SP, Ort DR (2010) More than taking the heat: Crops and global change. Curr Opin Plant Biol 13: 240-247

Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37: 118-125

Murakami Y, Tsuyama M, Kobayashi Y et al. (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287: 476-479

Nobel PS (1988).Principles underlying the prediction of temperature in plants, with special reference to desert succulents. In: Plants and Temperature, 42, 1-23. Ed, SP Long, FI Woodward. Symposia Soc Exp Biol

Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: A review. Eur J Agron 10: 23-36

Raison JK, Roberts JKM, Berry JA (1982) Correlations between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of Nerium oleander to growth temperature. Biochim Biophys Acta (Biomem) 688: 218-228

Sage, RF, Kubien SD (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Env 30: 1086-1106

Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid  eactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28: 269-277

Stone PJ, Nicolas ME  (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Aust J Plant Physiol 21:887-900

Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosyn Res 119: 101-117 doi: 10.1007/s11120-013-9874-6

Further reading

Hall AE. Heat stress and its impact. In: Plant Stress. Ed A Blum. http://www.plantstress.com/Articles/heat_i/heat_i.htm

Hall AE. The mitigation of heat stress. In: Plant Stress. Ed A Blum. http://www.plantstress.com/Articles/heat_m/heat_m.htm